Sale!

Optimization Techniques

Authors: Dr. Manisha Anil Kumbhar, Prof. Nitin Ganeshar, Prof. Smita Chavan and Mrs. Prajali Patil

Editor: Prof. Pradeep Kumar Shitole

ISBN: 978-81-981931-9-3

DOI: https://doi.org/10.59646/ot/288

Date of Publication: November 26, 2024

About the Book:

“Optimization Techniques” is a comprehensive textbook that covers various optimization techniques used in mathematics, computer science, engineering, and economics. The book provides a detailed introduction to optimization methods, including linear and nonlinear programming, dynamic programming, and stochastic optimization, with numerous examples and case studies to illustrate their application. Suitable for undergraduate and graduate students, researchers, and practitioners in optimization and related fields, this book offers a comprehensive treatment of optimization algorithms and their implementation.

References

  1. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications. Prentice Hall.
  2. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear Programming: Theory and Algorithms. John Wiley & Sons.
  3. Bertsekas, D. P. (2018). Convex Optimization Algorithms. Athena Scientific.
  4. Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
  5. Chong, E. K., & Zak, S. H. (2013). An Introduction to Optimization. John Wiley & Sons.
  6. Dantzig, G. B., & Thapa, M. N. (2003). Linear Programming 2: Theory and Extensions. Springer.
  7. Dimitris Bertsimas, John N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, 1997, 1st edition.
  8. Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Springer Science & Business Media, 2006, 2nd edition, 2018, 3rd edition.
  9. Leon Bottou, Frank E. Curtis, Jorge Nocedal, Optimization Methods for Large-Scale Machine Learning, Springer Nature, 2018, 1st edition.
  10. Luenberger, D. G., & Ye, Y. (2016). Linear and Nonlinear Programming. Springer.
  11. Meir Rosenblatt, Yutian Chen, Optimization: Algorithms and Applications, Springer Nature, 2018, 1st edition.
  12. Mokhtar S. Bazaraa, Hanif D. Sherali, C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, 2013, 3rd edition.
  13. Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.
  14. Rardin, R. L. (2017). Optimization in Operations Research. Prentice Hall.
  15. Sra, S., Nowozin, S., & Wright, S. J. (2012). Optimization for Machine Learning. MIT Press.
  16. Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2004, 1st edition, 2004, 2nd edition, 2019.
  17. Suvrit Sra, Sebastian Nowozin, Stephen J. Wright, Optimization for Machine Learning, MIT Press, 2012, 1st edition.
  18. Winston, W. L. (2004). Operations Research: Applications and Algorithms. Cengage Learning.

 

 

Description